Loading…
This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own

For Campus Prearrival Information <click here>
For a PDF of the 2015 Program Materials <click here>
For ALL Abstracts [1-220] in sequential order <click here>
For ALL Authors of the Lecture and Poster Presentations <click here>


View analytic
Monday, August 24 • 10:20am - 11:20am
[0215] The Functionalization of C—H Bonds

Sign up or log in to save this to your schedule and see who's attending!

Limited Capacity seats available

Among the frontier challenges in chemistry in the 21st century are the interconnected goals of increasing control of chemical reactivity while synthesizing and diversifying complex molecules with higher efficiency. Traditional organic methods for installing oxidized functionality rely heavily on acid-base reactions that require extensive functional group manipulations (FGMs). In contrast, nature routinely uses allylic and aliphatic C—H oxidation methods, generally mediated by heme and non-heme iron monooxygenase enzymes, to directly install oxidized functionality into the preformed hydrocarbon framework of complex molecules. Due to their ubiquity in complex molecules and inertness to most organic transformations, C—H bonds have typically been ignored in the context of methods development for total synthesis. The exceptions to this rely on substrate directing groups to facilitate site-selectivity and reactivity. The discovery and development of highly selective oxidation methods for the direct installation of oxygen, nitrogen and carbon into allylic and aliphatic C—H bonds of complex molecules and their intermediates are discussed.  Unlike Nature which uses elaborate shape or functional group recognition active sites, this chemistry harnesses the subtle electronic, steric, and stereoelectronic interactions between C—H bonds and small molecule transition metal complexes to achieve high regio-, chemo-, stereo- and site-selectivities with high substrate generality- and without the requirement for directing groups. Our current understanding of these interactions gained through empirical and mechanistic studies will be discussed. A user-friendly catalyst reactivity model that calculates and even predicts the major site of oxidation as well as the magnitude and direction of the site-selectivity in complex substrates as a function of catalyst will be delineated. Novel strategies for streamlining the process of complex molecule synthesis and diversification enabled by these methods will be presented. 


Plenaries and Awardees
avatar for M Christina White

M Christina White

Professor of Chemistry, University of Illinois
Professor M. Christina White received her B.A. with highest honors in Biochemistry from Smith College in 1992 and her Ph.D. from Johns Hopkins University in 1998. After a postdoctoral fellowship at Harvard University, she joined the faculty there in 2002. In 2005 she joined the faculty at the University of Illinois at Urbana-Champaign. Her research interests are in the field of organic synthesis with an emphasis on the discovery of... Read More →



Monday August 24, 2015 10:20am - 11:20am
Corwin Pavilion